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Abstract
An elegant formula for coordinates of carbon atoms in a unit cell of a single-
walled nanotube (SWNT) is presented and the potential of neon (Ne) inside an
infinitely long SWNT is analytically derived under the condition of the Lennard-
Jones potential between Ne and carbon atoms. Specific heats of dilute Ne inside
a long (20, 20) SWNT are calculated at different temperatures. It is found
that Ne exhibits three-dimensional (3D) gas behaviour at high temperature but
behaves as a 2D gas at low temperature. Especially, at ultra-low temperature,
Ne inside (20, 20) nanotubes behaves as a lattice gas. A rough method to
determine the characteristic temperature Tc for low density gas in a potential is
put forward. If T � Tc, we just need to use the classical statistical mechanics
without solving the Schrödinger equation to consider the thermal behaviour of
gas in the potential. But if T ∼ Tc, we must solve the Schrödinger equation.
For Ne in a (20, 20) nanotube, we obtain Tc ≈ 60 K.

1. Introduction

Since the discovery of carbon nanotubes [1], the peculiar electronic and mechanical properties
of these structures have attracted much attention [2–4]. Experiments have also revealed that
they can also be used to store hydrogen [5] and other gases [6]. Many physicists expected that
gases in nanotubes or nanotube bundles may display novel one-dimensional (1D) behaviour as
a consequence of the remarkable aspect ratio of the length of tubes to their radius. The group
led by Cole [7], and other researchers [8], have theoretically studied properties of gases in
nanotubes or nanotube bundles. One of the most fantastic properties they found is the specific
heat of dilute gas inside single-walled carbon nanotubes (SWNTs) as a function of temperature:

4 Author to whom any correspondence should be addressed.
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Figure 1. The unrolled honeycomb lattice of an SWNT. By rolling up the sheet along the chiral
vector Ch, that is, such that the point A0 coincides with the point corresponding to vector Ch, a
nanotube is formed. The vectors a1 and a2 are the real space unit vectors of the hexagonal lattice.
The translational vector T is perpendicular to Ch and runs in the direction of the tube axis. The
vector R is the symmetry vector. A0, B0 and Al , Bl (l = 1, 2, . . . , N) are used to denote the sites
of carbon atoms.

with increasing temperature it shows the thermal behaviour changing from 1D through 2D to
3D. However, there are still two questions arising: do 1D and 2D behaviours always exist for
dilute gas inside an SWNT only if the temperature is low enough, and is classical statistical
mechanics (CSM) sufficient to deal with this problem?

In [9], we have given a brief answer to the first question. Here we will exhibit the full
calculations and continue to discuss the second question. In recent papers, S̆iber et al [10] treat
the specific heat of dilute He atoms adsorbed in interstitial channels and grooves of carbon
nanotube bundles. Here we partially follow their approach.

This paper is organized as follows: in section 2, we give the expressions of the coordinates
of carbon atoms in a unit cell of an SWNT. In section 3, we analytically calculate the potential
of Ne in a carbon nanotube. As an example, we calculate the potential of Ne in a (20, 20)
tube. In section 4, we list the related formula of thermodynamics in statistical mechanics to
calculate the specific heat. In section 5, we calculate the specific heats of Ne inside a (20, 20)
at different temperatures without considering θ, z effects (θ, z are defined in section 2). In
section 6, we calculate the specific heats of Ne inside (20, 20) at low temperature. In section 7,
we discuss why we do not use CSM to calculate the specific heat. In this section, we present
a rough method to estimate the characteristic temperature, below which the CSM cannot be
used. In section 8, we discuss the reliability of our results and give brief conclusions.

2. The coordinates of carbon atoms in a unit cell of an SWNT

An SWNT without two caps can be constructed by wrapping up a single sheet of graphite
such that two equivalent sites of the hexagonal lattice coincide [11]. To describe the SWNT,
some characteristic vectors require introduction. As shown in figure 1, the chiral vector Ch,
which defines the relative location of two sites, is specified by a pair of integers (n1, n2) which
is called the index of the SWNT and relates Ch to two unit vectors a1 and a2 of graphite
(Ch = n1a1 + n2a2). The chiral angle θ0 defines the angle between a1 and Ch. For an (n1, n2)

nanotube, θ0 = arccos
[

2n1+n2

2
√

n2
1+n2

2+n1n2

]
. The translational vector T corresponds to the first lattice
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point of a 2D graphitic sheet through which the line normal to the chiral vector Ch passes.
The unit cell of the SWNT is the rectangle defined by vectors Ch and T, while vectors a1 and
a2 define the area of the unit cell of 2D graphite. The number N of hexagons per unit cell of
SWNT is obtained as a function of n1 and n2 as N = 2(n2

1 + n2
2 + n1n2)/dR , where dR is the

greatest common divisor of (2n2 + n1) and (2n1 + n2). There are 2N carbon atoms in each unit
cell of the SWNT because every hexagon contains two atoms. To denote the 2N atoms, we use
a symmetry vector R to generate coordinates of carbon atoms in the nanotube, defined as the
site vector having the smallest component in the direction of Ch. From a geometric standpoint,
vector R consists of a rotation around the nanotube axis by an angle � = 2π/N combined
with a translation τ in the direction of T; therefore, R can be denoted by R = (�|τ ). Using
the symmetry vector R, we can divide the 2N carbon atoms in the unit cell of the SWNT into
two classes: one includes N atoms whose site vectors satisfy

Al = lR − [lR · T/T2]T (l = 0, 1, 2, . . . , N − 1); (1)

the other includes the remainding N atoms whose site vectors satisfy

Bl = lR + B0 − [(lR + B0) · T/T2]T − [(lR + B0) · Ch/C2
h]Ch (l = 0, 1, . . . , N − 1),

(2)

where B0 ≡ (�0|τ0) =
(

2πacc cos(θ0− π
6 )

|Ch|
∣∣∣acc cos

(
θ0 − π

6

))
represents one of the nearest

neighbour atoms to A0 and acc is the carbon–carbon bond length.
We introduce a cylindrical coordinate system (r, θ, z) whose z-axis is the tube axis. Its

rθ -plane is perpendicular to the z-axis and contains atom A0 in the nanotube. r is the distance
from some point to the z-axis, and θ the angle rotating around the z-axis from an axis which
is vertical to the z-axis and passes through atom A0 in the tube to the point. In this coordinate
system, we can express equations (1) and (2) as

Al = (ρ, l�, lτ − [lτ/T ]T ) (l = 0, 1, 2, . . . , N − 1), (3)

and

Bl =
(
ρ, l� +�0 − 2π

[
l� + �0

2π

]
, lτ + τ0 −

[
lτ + τ0

T

]
T

)
(l = 0, 1, 2, . . . , N − 1),

(4)

where ρ = |Ch|/2π . In equations (1)–(4), the symbol [· · ·] denotes the largest integer smaller
than . . ., e.g., [5.3] = 5.

3. The potential of Ne inside carbon nanotubes

To obtain the potential of Ne inside the nanotube, we firstly consider another simple system
shown in figure 2: many atoms distributed regularly in a line form an infinite-atom chain and
an atom Q is out of the chain. The interval between neighbour atoms in the chain is T , and
the site of atom Q relative to atom 0 can be represented by numbers c1 and c2. We take the
Lennard-Jones potential U(R j) = 4ε[(σ/R j)

12 − (σ/R j )
6] between atom Q and atom j in

the chain, where R j is the distance between Q and atom j , and ε = √
εcεNe, σ = (σc + σNe)/2

with εNe = 35.6 K, σNe = 2.75 Å, εc = 28 K and σc = 3.4 Å [7, 12]. We calculate the
potential between atom Q and the chain as

UQC = 4ε[σ 12U6(c1, c2)− σ 6U3(c1, c2)], (5)
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Figure 2. An infinite-atom chain and an atom Q out of the chain. Many atoms distributed regularly
in a line form the infinite-atom chain. The interval between neighbour atoms in the chain is T , and
the site of atom Q relative to atom 0 can be represented by numbers c1 and c2.

Figure 3. The potentials inside the (20, 20) nanotube calculated from equation (7) (squares) and
the fit curve (solid curve).

where Uk(c1, c2) = ∑∞
n=−∞

1
[(c1+nT )2+c2

2]k (k = 1, 2, . . .) which can be calculated through the

following recursion [13]:

U1(c1, c2) = π sinh(2πc2/T )

c2T [cosh(2πc2/T )− cos(2πc1/T )]
,

Uk+1(c1, c2) = −1/(2kc2)∂Uk/∂c2.

(6)

The (20, 20) tube, for example, with infinite length, can be regarded as 2N = 80 chains.
Thus the potential of any point Q inside the tube can be calculated as

U(r, θ, z) =
2N∑
i=1

UQC, (7)

where (r, θ, z) is the coordinates of Q in the cylindrical coordinate system. As an
approximation, we neglect the potential varying with z and θ because we find that it is
much smaller than the potential varying with r through calculations, and fit the potential
with U(r) = 4ε[( σ̃

ρ−r )
10 − ( σ̃

ρ−r )
4], where ρ = 13.56 Å is the radius of the tube, ε = 390 K,

and σ̃ = 2.63 Å (see also figure 3). Moreover, we simplify it as

U(r) =




4ε

[(
σ̃

ρ − r

)10

−
(

σ̃

ρ − r

)4]
, r < ρ − σ̃ ,

∞, r > ρ − σ̃ .

(8)
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4. The basic formulae of thermodynamics in statistical mechanics

When we deal with the thermal behaviour of dilute Ne in a nanotube, we will begin with the
free energy F = −T ln Z, where T is temperature and Z = ∑

n e−En/T = tr exp(−H/T ) is
the partition function. We have let the Boltzmann factor be 1 [14]. En are the eigenvalues
of the Schrödinger equation: Hψn = Enψn . From the free energy, we can derive the

specific heat cv = −T (∂2F/∂T 2)v = 〈E2
n 〉−〈En 〉2

T 2 , where 〈E2
n〉 = ∑

n E2
n e−En/T /Z and

〈En〉 = ∑
n Ene−En/T /Z.

We call the above statistical mechanics ordinary statistics (OS) and list the corresponding
formula in CSM: the free energy Fcl = −T ln Zcl , where Zcl = ∫ ′ e−E(p,q)/T d� is
the partition function and here the prime means we integrate only over the regions of
phase space which correspond to physically different states of particles. The specific
heat cvcl = −T (∂2Fcl/∂T 2)v = 〈E2〉−〈E〉2

T 2 , where 〈E2〉 = ∫ ′ E2e−E(p,q)/T d�/Zcl and
〈E〉 = ∫ ′ Ee−E(p,q)/T d�/Zcl .

Under sufficiently high temperature, F converge to Fcl . In other words, the applicable
domain of F is larger than that of Fcl . Therefore, the conclusion derived from F is much more
reliable than that derived from Fcl . We will use OS in the following discussions if we do not
make a special statement.

5. Specific heats of Ne gas in an approximate potential

Because we consider dilute Ne, we can neglect the interaction between Ne atoms and write
the single-particle Schrödinger equation [15] as Hψ = Eψ , where H = − h̄2

2µ∇2 + U(r) and

ψ = φei(mθ+κz). It follows that

E = h̄2κ2

2µ
+ Em (κ ∈ R,m = 0,±1,±2, . . .),

H (r)φ = Emφ,

H (r) = − h̄2

2µ

(
d2

dr2
+

1

r

d

dr
− m2

r2

)
+ U(r),

(9)

where m is the angular quantum number and Em is the corresponding energy. Setting
r = (ρ − σ̃ )ξ , ε0 = h̄2

2µρ2 and η = σ̃ /ρ, equations (8) and (9) are transformed into

u(ξ) =




4ε

[(
η

1 − (1 − η)ξ

)10

−
(

η

1 − (1 − η)ξ

)4]
, ξ < 1,

∞, ξ > 1,

(10)

and

Hϕ(ξ) = Emϕ(ξ),

H = − ε0

(1 − η)2

(
d2

dξ2
+

1

ξ

d

dξ
− m2

ξ2

)
+ u(ξ).

(11)

If we let |ϕ〉 = ∑
n an|χn〉, we will obtain the secular equation

det(H jn − EmS jn) = 0, (12)

where H jn = ∫ 1
0 χ jH(ξ)χnξ dξ , and S jn = ∫ 1

0 χ jχnξ dξ . If we let χn = J|m|(νnξ), where
J|m|(ξ) is the mth order Bessel function of the first class and νn is the nth zero point of the Bessel
function [16], we can calculate Emn(m = 0,±1,±2, . . . ; n = 1, 2, 3, . . .) from equation (12).
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Figure 4. The specific heats per atom cv of Ne inside a (20, 20) nanotube at different temperatures
without considering the θ, z effect. The triangles are the results of OS and the solid curve is that
of CSM.

If there are N Ne atoms inside the tube, we have the free energy F = −NT ln Z1, where

Z1 = ∑
mn e−Emn/T

∫ ∞
−∞ e− h̄2κ2

2µT dκ . We can easily obtain the specific heat per atom as

cv = − T ∂2F
N ∂T 2

= 1

2
+

〈E2
nm〉 − 〈Enm〉2

T 2
, (13)

where

〈Enm〉 =
∑

mn Emne−Emn/T∑
mn e−Emn/T

and

〈E2
nm〉 =

∑
mn E2

mne−Emn/T∑
mn e−Emn/T

.

In figure 4, the �symbols reflect cv varying with the temperature T , which implies Ne
atoms inside a (20, 20) tube behave as a 3D gas at high temperature (specific heat approaches
3/2) and a 2D gas at low temperature (specific heat is 1). Therefore, we can naturally assume
that all atoms are in the valley of potential U(r) at low temperature, i.e. lie on the shell S∗ with
radius � = ρ[1 − (5/2)1/6η].

At high temperature, the Ne atoms may evaporate from the nanotube, but our model cannot
recover this effect because our potential is infinite near the surface of the carbon nanotube.

6. Specific heats at low temperature

Now we consider the thermal property of Ne inside the nanotube at low temperature in detail.
We assume that all atoms lie on the shell S∗ with radius � = ρ[1 − (5/2)1/6η] at temperature
lower than some critical temperature which depends on the energy difference between the
two lowest energies of radial excitations. From equations (5)–(7) we can easily calculate the
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potential Us(v, z) on S∗, where v = �θ . The Hamiltonian of a single particle can be expressed
as H ′ = − h̄2

2µ(
∂2

∂v2 + ∂2

∂z2 ) + Us(v, z).
In fact, Us has periodic structure. If we denote α1 = (2π�/N, τ ), α2 = (0, T ) and

γl = l1α1 + l2α2, we have Us(r + γl) = Us(r), where l1, l2 ∈ Z and r = (v, z). On the one
hand, we have the Bloch theorem [17]:

H ′�(κ, r) = Eκ�(κ, r),

�(κ, r + γl) = eiκ·γl�(κ, r),
(14)

which suggests that �(κ, r) = ∑
j a(κ + G j )ei(κ+G j )·r, where G j = j1β1 + j2β2 with

j1, j2 ∈ Z, β1 = (N/�, 0) and β2 = (−τN/(T �), 2π/T ). From equation (30), we obtain the
secular equation

det(Hl j − Eκδl j ) = 0, (15)

where Hl j = h̄2

2µ(κ + G j)
2δl j + Ul j , Ul j = 1

�0

∫
�0

ei(Gl −G j )·rUs(r) dr and �0 = |α1 × α2|.
On the other hand, the periodic boundary condition along the circumference of the shell S∗

suggests that we just need to consider the first Brillouin zone which consists of κ = (mv/�, κz)

where mv ∈ Z, 0 � mv < N and κz ∈ R, 0 � κz < 2π/T .
From equation (15), we can calculate the energy Emv,κz , and then the free energy

F = −NT ln Z1
Note 5, where Z1 = ∑

mv

∫ 2π/T
0 e−Emv ,κz /T dκz . Moreover, the specific heat

per atom is [14]

cv = − T ∂2F
N ∂T 2

= 〈E ′2〉 − 〈E ′〉2

T 2
, (16)

where

〈E ′〉 =
N−1∑

mv=0

∫ 2π/T

0
Emv,κz e

−Emv ,κz /T dκz/Z

and

〈E ′2〉 =
N−1∑

mv=0

∫ 2π/T

0
E2

mv,κz
e−Emv ,κz /T dκz/Z.

In figure 5, the �symbols reflect cv varying with the temperature T , which implies Ne
atoms inside a (20, 20) tube behave as a lattice gas [18] at ultra-low temperature (specific heat
is zero) and a 2D gas at low temperature (specific heat approaches unity). There is no 1D gas
inside a (20, 20) tube, which is quite different from our usual notion.

7. Why not use CSM?

At sufficiently high temperature, F converges to Fcl . If a carbon nanotube, for example a
(20, 20) tube, just a geometric tube with diameter d ≈ 2 nm, the characteristic temperature
Tc = h2/(2πmd2) = 0.04 K. We just need to use the CSM if T � Tc. However,
here the carbon nanotube provides potential to Ne. In the potential, to calculate the
characteristic temperature is not a simple matter. For example, consider some atoms in a
harmonic potential U(r) = 1

2 mω2r2. We can easily calculate the specific heat per atom
cv = (3ω2/T 2) exp(−ω/T )/[1 − exp(−ω/T )]2 [14]. Here we have set h̄ = 1. We know
cv = 3 if T � ω and this is the classical case. Thus we can set Tc = ω (in full Tc = h̄ω/kB).

5 In fact, here we just consider the energies in the first Brillouin zone. If considering Eκ = E−κ and Eκ = Eκ+G j ,
we need to multiply by a constant before the partition function Z in the expression of the free energy.
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Figure 5. The specific heats (triangles) per atom cv of Ne inside a (20, 20) nanotube at low
temperatures.

Figure 6. A potential and its characteristic temperature. Um is the minimum of the potential and Tc
is the characteristic temperature. The parameters R1 and R2 satisfy U(R1) = U(R2) = Um + Tc.

The above discussion suggests that Tc depends on the potential. We propose a rough method
to obtain Tc which is the least root of the following equation:

Um + Tc = U(R1) = U(R2)

R2 − R1 = h/
√

2πmTc.
(17)

The physical meanings of parameters in equation (17) are shown in figure 6.
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Figure 7. The specific heats per atom cv of Ne inside a (20, 20) nanotube at high temperatures.
The triangles are the results of OS without considering the θ, z effect and the solid curve is that of
CSM with the θ, z effect.

For the potential U(r) = 1
2 mω2r2 in the above example, Um = 0, R1 = −R2, R2 − R1 =

2R2, using equation (17) we arrive at Tc =
√
π

2 ω ∼ ω (the full form is Tc =
√
πh̄ω
2kB

∼ h̄ω/kB).

For a (20, 20) nanotube, the approximate potential is U(r) = 4ε[( σ̃
ρ−r )

10 − ( σ̃
ρ−r )

4], with

ρ = 13.56 Å, ε = 390 K, and σ̃ = 2.63 Å. We can numerically solve equation (17) and give
Tc ≈ 60 K. If T � Tc (e.g. T > 3Tc = 180 K), the classical case is expected and CSM is
valid. But CSM cannot be used if T ∼ Tc (e.g. T < 2Tc = 120 K), especially T < Tc = 60 K.

In figure 4 we give results obtained from OS and CSM. The information shown in figure 4
agrees with our rough estimate of Tc very well. Therefore, using the CMS is insufficient. It
is necessary to consider the quantum mechanics. In other words, quantum mechanics must be
used when studying the behaviours of gases on the nanometre scale.

8. Discussion and conclusion

We notice that the potential U is a function of (r, θ, z) and U(r, θ + 2π j1/N, z + j1τ + j2T ) =
U(r, θ, z), where N, τ and T are parameters of a carbon nanotube, and j1 and j2 are two
integers. Under this symmetry, we must use a generalized Bloch theorem (see appendix) to
find the eigenvalues of the Schrödinger equation. We can also obtain the secular equation of
energies. Although we have 16 Pentium IV computers, the data and computing time exceed
our computers’ capability if we calculate the specific heat with temperature varying from 0
to 400 K. But, fortunately, we find that the variation of potential with θ, z is less than 30 K,
much smaller than that with r . In section 5, we neglect the effect of the variation of potential
with θ, z. Indeed, this effect can be neglected under high temperature in terms of intuition.
At high temperature, the values of cv approach that calculated from CSM. We show them in
figure 7, in which the triangles are values neglecting the effect of θ, z and the line is the result
calculated from CSM considering the effect of θ, z. It suggests our intuition is reliable.
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We know the effect of θ, z is important under low temperature. In section 6, we consider
this effect in detail. Because the shape of U is very sharp and deep with r , the particles are
confined in the bottom of U(r) at low temperature. Thus we can consider the effect of θ, z but
neglect the effect of r at low temperature.

Therefore, we believe that we have grasped the main factors under high and low
temperature and our qualitative conclusions are reliable.

The interactions (including the contribution from the polarization of the pi electrons)
between Ne and C atoms are intermolecular forces, van der Waals type interactions. For
theoretical study, the simplest form of van der Waals force is the Lennard-Jones potential. We
believe that the final results based on the Lennard-Jones potential are qualitatively reasonable.
Maybe, many researchers [7, 8] use it for the same reasons. Indeed, the more detailed study
needs to consider the Gay–Berne potential [19] or other complex potentials. We are considering
overcoming this difficult problem by using numerical simulations.

It is necessary to notice that we just consider dilute Ne and the interactions between Ne
atoms are naturally neglected. Therefore, we do not describe the phase transition of Ne in
SWNTs. If we intend to deal with the phase transition, we must include the interactions
between Ne atoms and use the methods of quantum field theory, such as the renormalization
group approach [20], etc.

In conclusion, we calculate the specific heat of Ne in (20, 20) SWNTs at low and high
temperature and find the dimensional crossover of thermal behaviour in this system. Especially,
the dilute Ne gas exhibits a 2D behaviour at low temperature or 2D lattice behaviour at ultra-
low temperature. The simple physical picture is that all atoms are confined on a shell below a
critical temperature.
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Appendix. Generalized Bloch theorem

In section 5, we calculate the specific heat neglecting the effect of θ, z; and in section 6, in fact,
we neglect the effect of r . In other words, we do not obtain the specific heats in a consistent
way from low to high temperature. Indeed, the potential U is a function of (r, θ, z) and satisfies
U(r, θ + 2π j1/N, z + j1τ + j2T ) = U(r, θ, z), where j1 and j2 are two integers. If a potential
satisfies this condition, it is called spiral symmetric. Under this spiral symmetry, we must use a
generalized Bloch theorem to find the eigenvalues of Schrödinger equation and then calculate
the specific heat in a consistent way [21].

Above all, we go over traditional translational symmetry and Bloch’s theorem [22].
The Hamiltonian of a system with translational symmetry is expressed as

H = − h̄2

2µ
∇2 + V (r); V (r + R j ) = V (r), (18)

where R j = n j1a1 + n j2a2 + n j3a3 and n j1, n j2 and n j3 are integers.
Define translational operators J (R j ), which act on a function f (r) as

J (R j ) f (r) = f (r + R j ). (19)

It follows that

J (R j )J (Rl) = J (Rl + R j) = J (R j + Rl) = J (Rl)J (R j), (20)
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and

J (R j)H f (r) = − h̄2

2µ
J (R j)∇2 f (r) + J (R j )V (r) f (r)

= − h̄2

2µ
∇2J (R j ) f (r) + V (r + R j ) f (r + R j )

=
[
− h̄2

2µ
∇2 + V (r)

]
f (r + R j) = HJ (R j) f (r). (21)

Therefore {J (R j), H } is the set of conserved quantities. In this case, an eigenfunction of
the Hamiltonian must be an eigenfunction of the translational operators, i.e., J (R j)ψ(r) =
ψ(r + R j) = λ(R j )ψ(r) if Hψ(r) = Eψ(r). Furthermore, the electron density must be
periodic, i.e., |ψ(r + R j)|2 = |ψ(r)|2. It follows that

|λ(R j )|2 = 1. (22)

But from equation (20), we know

λ(R j )λ(Rl) = λ(R j + Rl). (23)

The solution of equation (23) under the constraint equation (22) is λ(R j) = eiκ·R j . Thus we
have Bloch’s theorem:

ψ(r + R j) = eiκ·R jψ(r). (24)

Next, we will turn to the spiral symmetry and generalize the Bloch theorem. The
Hamiltonian with the spiral symmetry in cylindrical coordinates is expressed

H = − h̄2

2µ

(
∂2

∂r2
+
∂

r∂r
+

∂2

r2∂θ2
+
∂2

∂z2

)
+ V (r, θ, z), (25)

V (r, θ, z) = V (r, θ + j1ϑ, z + j1τ + j2T ), (26)

where ϑ = 2π/N, Nτ = MT , N,M ∈ N, j1, j2 ∈ Z. Define vectors r = (θ, z) and
R j = ( j1ϑ, j1τ + j2T ) in the space [0, 2π)× R, and operators J (R j) which act on a function
f (r; r) as J (R j) f (r; r) = f (r; r + R j ). It follows that J (R j)J (Rl) = J (Rl + R j ) =
J (R j + Rl) = J (Rl)J (R j) and J (R j )V (r; r) = V (r; r)J (R j ). Otherwise,

J (R j )

(
∂2

r2∂θ2
+
∂2

∂z2

)
f (r; r) =

(
∂2

r2∂θ2
+
∂2

∂z2

)
J (R j) f (r; r). (27)

Thus

J (R j )H = HJ (R j). (28)

We can obtain a generalized Bloch theorem analogizing the method to obtain the traditional
Bloch theorem:

ψ(r; r + R j) = eiκ·R jψ(r; r), (29)

where κ = (l, κ), l = 0, 1, . . . , N − 1, 0 � κ < 2π/T .
If we set α1 = (ϑ, τ ), α2 = (0, T ), β1 = (N, 0), β2 = (−τN/T, 2π/T ) and

Gj = j1β1 + j2β2 = ( j1 N − j2 Nτ/T, 2π j2/T ), then we can expand the wavefunction
as the superposition of planar waves:

ψ(r; r) =
∑

j

Cjϕ(r)e
i(κ+Gj)·r. (30)
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In cylindrical coordinates, equations (29) and (30) are expressed

ψ

(
r, θ +

2π j1
N

, z + j1τ + j2T

)
= exp

(
i

[
2πl j1

N
+ κ( j1τ + j2T )

])
ψ(r, θ, z), (31)

ψlκ (r, θ, z) =
∑
j1 j2

C j1 j2ϕlκ (r) exp(i[(l + j1 N − j2 Nτ/T )θ + (κ + 2π j2/T )z]). (32)

Expandingϕlκ (r)with normalized orthogonal basis {χnlκ (r), n ∈ N} we obtain the secular
equation from equation (32) and the Schrödinger equation

det[(Hm1m2 j1 j2nn′ − Enlκδ j1m1δ j2m2δnn′)] = 0, (33)

where

H j1 j2m1m2nn′ = T j1 j2nn′δ j1m1δ j2m2 + U j1 j2m1m2nn′,

T j1 j2nn′ = − h̄2

2µ

∫ ρ

0
χnlκ (r)

[
d2

dr2
+

d

rdr
− (l + j1 N − j2 Nτ

T )2

r2
−

(
κ +

2π j2
T

)2]
χn′lκ (r)r dr,

and

U j1 j2m1m2nn′ = N

2πT

∫ 2π

0
dθ

∫ T

0
dz

∫ ρ

0
r dr χnlκ (r)U(r, θ, z)χn′lκ (r)

× exp

(
i

[
( j1 − m1)− ( j2 − m2)τ

T

]
Nθ +

i2π( j2 − m2)z

T

)
.
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